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Abstract— Bode integrals of sensitivity and sensitivity-like
functions along with complementary sensitivity and com-
plementary sensitivity-like functions are conventionally used
for describing performance limitations of a feedback control
system. In this paper, we show that in the case when the
disturbance is a wide sense stationary process the (comple-
mentary) sensitivity Bode integral and the (complementary)
sensitivity-like Bode integral are identical. A lower bound of the
continuous-time complementary sensitivity-like Bode integral is
also derived and examined with the linearized flight-path angle
tracking control problem of an F-16 aircraft.

I. INTRODUCTION

The last two decades have witnessed a tremendous
progress in communication technologies and their use in
feedback control systems. A great deal of attention has been
given to understanding the fundamental limitations of closed-
loop systems in the presence of communication channels
[1]–[6]. The main contribution of these papers was to derive
performance limitations of stochastic nonlinear systems in
the presence of limited information. While [1]–[3], [5], [6]
looked into discrete-time systems and investigated the Bode-
like integrals using Kolmogorov’s entropy-rate equality [7],
the results in [4] provided an extension to continuous-
time systems by resorting to mutual information rates. In
these papers, the notion of the sensitivity-like function was
introduced to derive Bode-like integrals and corresponding
lower bounds, which can be considered as a generalization of
the classical result of Bode integrals for linear time-invariant
(LTI) deterministic systems [8]. The classical result in [8]
states that for open-loop stable transfer functions the Bode
integral equals zero, while for unstable open-loop transfer
functions it is lower bounded by the sum of unstable poles
of the open-loop transfer function [9], [10]. Similar to the
sensitivity function in a LTI system, the complementary sen-
sitivity function is also used for robustness and performance
analysis of closed-loop systems [11]. We notice that the
result on the complementary sensitivity Bode integral was
once hindered by the unboundedness of the integrand in
high frequencies [12]. This issue was later overcome in [11]
by adopting a weighted Bode integral of the complementary
sensitivity function, proven to be lower bounded by the sum
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of the reciprocals of non-minimum phase zeros. Seminal
results on this topic were reported also in [13], [14].

Performance limitations of stochastic systems in the
presence of limited information were analyzed through
sensitivity-like function S(ω) in [1]–[4] and the comple-
mentary sensitivity-like function T (ω) in [5], [6]. Taking
an information-theoretic approach was the key to get Bode
integrals extended to stochastic nonlinear systems. Unlike the
frequency-domain approach, which explicitly depends on the
input-output relationship of the feedback systems (transfer
function), the focus of the information-theoretic approach is
on the signals. The lower bound for sensitivity-like Bode
integral for continuous-time systems was first put forward
in [4]:

1

2π

∫ ∞

−∞
log |S(ω)|dω ≥

∑
λ∈UP

pi. (1)

This result can be applied to systems with nonlinear con-
trollers, which is an improvement upon the prior results
based on the frequency-domain approach [8]–[15]. However,
to the best of authors’ knowledge, a lower bound for the
complementary sensitivity-like Bode integral for continuous-
time systems has not been derived yet. The unboundedness
of the integrand in high frequencies as stated in [12] and
the challenge in representing the weighted Bode-like integral
with information-theoretic tools similar to [11] have been the
main obstacles on this path.

In this paper, we provide a partial answer to the question:
What is the relationship between Bode integrals of the (com-
plementary) sensitivity function and the (complementary)
sensitivity-like function? We answer this question for the
continuous-time linear feedback system with a wide sense
stationary input, while some partial answers on discrete-
time systems can be found in [2], [6]. We notice that
while Kolmogorov’s entropy-rate equality has been used for
discrete-time systems in [1]–[3], [5], [6] to obtain a lower
bound for the sensitivity Bode-like integral, a seminal result
on mutual information rates from [16, p. 181] was used in [4]
to obtain a similar bound for continuous-time systems. In
this paper, we resort to power spectral density (PSD) to
analyze the sensitivity and the complementary sensitivity
of continuous-time systems. With the convenience brought
by this new tool, we first time find a lower bound and an
information-theoretic representation for the complementary
sensitivity Bode-like integral. The sensitivity properties of
an F-16 aircraft in the flight-path angle tracking problem are
analyzed.

The paper is organized as follows: Section II introduces
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the preliminaries on Bode integrals and information theory.
Section III investigates the relationship between the sen-
sitivity and the sensitivity-like Bode integrals. Section IV
investigates the complementary sensitivity and the comple-
mentary sensitivity-like Bode integrals and proposes a lower
bound for the latter. Section V presents a numerical example.
Section VI draws the conclusion.

II. PRELIMINARIES

Consider a continuous-time feedback configuration P de-
picted in Figure 1,

L(s)
yed

x0

Fig. 1. Continuous-time feedback control system.

where d(t) ∈ R is the disturbance input, y(t) ∈ R is the
output, e(t) = d(t) − y(t) is the error signal, x(t) ∈ Rn is
the state, and L(s) denotes the open-loop transfer function
from e(t) to y(t)

L(s) = L(jω) =

∫ ∞

0

l(t) · e−jωtdt, (2)

with l(t) being the impulse response of the system. In a
deterministic setting, the initial condition x0 in the configu-
ration of Figure 1 is assumed zero. In a stochastic setting, one
assumes that the differential entropy of the initial condition
is finite [1]–[4]. Further discussion on these two different
types of initial conditions is available in [6]. Let the open-
loop transfer function L(s) in Figure 1 be

L(s) =
Y (s)

E(s)
= c ·

∏m
j=1(s− zj)∏n
i=1(s− pi)

, (3)

where m ≤ n, and c > 0. Inspired by [11], consider the
following frequency transformation

s̃ = jω̃ = (jω)−1 = s−1, (4)

where ω̃ = −ω−1. Applying (4) to transfer function (3), the
system with following transfer function L̃(s̃) is defined as
the auxiliary system:

L̃(s̃) =
Ỹ (s̃)

Ẽ(s̃)
= c ·

s̃n ·
∏m

j=1(1− s̃ · zj)
s̃m ·

∏n
i=1(1− s̃ · pi)

= L(s), (5)

which can be depicted by the diagram in Figure 2.

( )L s
ed y0

x

Fig. 2. Auxiliary system.

The Laplace transforms of the signals in the auxiliary system
and the signals in the original system satisfy

D̃(s̃) = D̃(s−1) = D(s̃−1) = D(s), (6)

which will also hold if d is replaced by e or y. It is worth
noting that although the auxiliary system L̃(s̃) may not
be proper, no intermediate result will be derived from this
auxiliary system. The inverse system L̃−1(s̃) is defined by
swapping the input ẽ and the output ỹ of the auxiliary system.
The transfer function of this inverse system then becomes:

L̃−1(s̃) =
Ẽ(s̃)

Ỹ (s̃)
=

1

c
· 1

s̃n−m
·
∏n

i=1(1− s̃ · pi)∏m
j=1(1− s̃ · zj)

, (7)

which is illustrated in Figure 3.

1( )L s
ed y 0

x

Fig. 3. Inverse of auxiliary system.

One can easily verify that if all the closed-loop poles of the
original system is stable, the closed-loop poles of the inverse
system will also be stable. To generalize the results of this
paper to MIMO systems, interested readers can refer to [6],
[17]. Before we continue to formulate the (complementary)
sensitivity analysis problem, some basic definitions are given
below following [4], [7].

Definition 1 (Wide Sense Stationary) A second order ran-
dom process {x} is called wide sense stationary, if

E[x(t)] = E[x(t+ v)],

Cov[x(t), x(t+ τ)] = Cov[x(v), x(v + τ)],
(8)

where E denotes expectation.

Definition 2 (Mutual Information & Mutual Information
Rate) The mutual information between two continuous-time
stochastic processes x and y is defined as

I(x; y) =

∫
Y

∫
X

f(x, y) log
f(x, y)

f(x)f(y)
dxdy, (9)

where f(x, y) is the joint probability distribution function,
and f(x) and f(y) are the marginal probability distribution
functions. The mutual information rate is defined as

I∞(x; y) = lim
t→∞

I(xt; yt)

t
. (10)

Definition 3 (Class F Function; See [4] or [16, p. 182])
We define class F function in the following way:

F = {l : l(ω) = p(ω)(1− ϕ(ω)), l(ω) ∈ C, ω ∈ R}, (11)

where p(·) is rational and ϕ(·) is a measurable function, such
that 0 ≤ φ ≤ 1 for all ω ∈ R and

∫
R | log(1−ϕ(ω))|dω < ∞.

The sensitivity function S(jω) of the feedback system in
Figure 1 is defined as the closed-loop transfer function from
the disturbance input d to the tracking error e:

S(jω) =
E(jω)

D(jω)
=

1

1 + L(jω)
. (12)
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The complementary sensitivity function T (jω) is defined as
the closed-loop transfer function from the disturbance input
d to the measurement output y:

T (jω) =
Y (jω)

D(jω)
=

L(jω)

1 + L(jω)
. (13)

The integrals of S(jω) and T (jω) over the whole frequency
domain are referred to as Bode integrals and satisfy the
following equalities [9], [10], [13]:

1

2π

∫ ∞

−∞
log

∣∣∣∣ S(jω)S(j∞)

∣∣∣∣ dω = lim
s→∞

s[S(s)− S(∞)]

2 · S(∞)
+

∑
pi∈UP

pi,

(14)
1

2π

∫ ∞

−∞
log

∣∣∣∣T (jω)T (0)

∣∣∣∣ dωω2
=

1

2T (0)
lim
s→0

dT (s)

ds
+

∑
zi∈UZ

1

zi
,

(15)
where UP and UZ respectively denote the set of unstable
poles and the set of non-minimum phase zeros of the plant
P . Since (14) and (15) are derived in frequency domain
using transfer functions, they cannot be applied to nonlinear
systems.

Starting with [1], [2], information theoretic tools were
leveraged to derive performance limitations and Bode-like
results for nonlinear systems. Instead of considering the
sensitivity function S(jω), in [2], [4] sensitivity-like function
S(ω) was introduced based on the properties of signals:

S(ω) =

√
φe(ω)

φd(ω)
, (16)

where φx(ω) denotes the PSD of a stationary signal x:

φx(ω) =

∫ ∞

−∞
rx(τ) · e−jωτdτ, (17)

and rx(τ) = rxx(t+ τ, t) denotes the auto-covariance of the
signal x with

rxy(v, t) = Cov[x(v), y(t)].

The complementary sensitivity-like function was defined for
discrete-time systems in [5]. Following the same philosophy,
the following definition of the complementary sensitivity-like
function is adopted in this paper:

T (ω) =

√
φy(ω)

φd(ω)
. (18)

As we mentioned previously, the lower bound for Bode
integral of T (ω) in continuous-time systems has not been
studied yet. In the following sections, we first discuss the
relationship between the (complementary) sensitivity and
the (complementary) sensitivity-like Bode integrals and then
propose a lower bound for the Bode integral of T (ω). Some
lemmas and assumptions that we adopt in this paper are listed
next.

Lemma 1 (See [4] or [16, p. 181]) Suppose that two one-
dimensional continuous-time processes x and y form a
stationary Gaussian process (x, y). Then

I∞(x, y) ≥ − 1

4π

∫ ∞

−∞
log

(
1− |φxy(ω)|2

φx(ω)φy(ω)

)
dω. (19)

The equality holds, if φx and φy belong to the class F.

Assumption 1 The disturbance input d(t) is a zero-mean
wide sense stationary process.

Remark 1 Compared with [1]–[3], [5], which assumed that
d is an asymptotically stationary process, Assumption 1 is
relatively stringent. However, this assumption is commonly
adopted among the results on continuous-time systems in
terms of signals, [4], [18].

Assumption 2 For the transfer function L(s) the amount of
zeros at s = 0 does not exceed the amount of poles at s = 0.

Remark 2 We only adopt this assumption when establishing
a lower bound for the complementary sensitivity-like Bode
integral. This assumption ensures that the inverse system
L̃−1(s̃) is proper, e.g. for a double integrator vehicle with
first order actuator dynamics L(s) = 1/[s2 · (0.1s + 1)]
from [19], we have L̃−1 = (s̃+0.1)/s̃3. Similar assumption
was adopted in [20], when investigating the string instability
(sensitivity) via a frequency-domain approach.

III. SENSITIVITY AND SENSITIVITY-LIKE FUNCTIONS

We first investigate the relationship between Bode integrals
of sensitivity function S(jω) and sensitivity-like function
S(ω) of the closed-loop configuration in Figure 1. The
following theorem states this relationship.

Theorem 1 When the disturbance input d(t) is wide
sense stationary, Bode integrals of the sensitivity and the
sensitivity-like functions satisfy

1

2π

∫ ∞

−∞
logS(ω)dω =

1

2π

∫ ∞

−∞
log |S(jω)|dω. (20)

Proof. The proof is given in Appendix A.

IV. COMPLEMENTARY SENSITIVITY AND
SENSITIVITY-LIKE FUNCTIONS

The relationship between Bode integrals of complemen-
tary sensitivity function T (jω) and the complementary
sensitivity-like function T (ω) in Figure 1 is summarized in
the following corollary.

Corollary 2 When the disturbance input d(t) is wide sense
stationary, Bode integrals of complementary sensitivity func-
tion T (jω) and complementary sensitivity-like function T (ω)
satisfy

1

2π

∫ ∞

−∞
log T (ω)

dω

ω2
=

1

2π

∫ ∞

−∞
log |T (jω)|dω

ω2
. (21)

Proof. The proof is given in Appendix B.

From Corollary 2, we know that Bode integrals of T (jω)
and T (ω) are equivalent, when the disturbance input is wide
sense stationary. The following theorem gives a lower bound
for the Bode integral of T (ω) in continuous-time setting.

Theorem 3 When the original system in Figure 1 is mean-
square stable and the inverse frequency noise d̃ is wide sense
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stationary, one has:

I∞(ỹ; ẽ)− I∞(d̃; ẽ) ≥
∑

zi∈UZ

1

zi
, (22)

where UZ is the set of unstable zeros of the plant P , and
ẽ and ỹ are the signals defined in the (inverse) auxiliary
system. Moreover, when the disturbance input d̃ is Gaussian
stationary, the complementary sensitivity-like Bode integral
satisfies

1

2π

∫ ∞

−∞
log T (ω)

dω

ω2
≥

∑
zi∈UZ

1

zi
. (23)

Proof. By the frequency transform (4), we can rewrite the
complementary sensitivity-like Bode integral defined in (21)
as follows

1

2π

∫ ∞

−∞
log T (ω)

dω

ω2
=

1

2π

∫ ∞

−∞
log T (−ω̃−1)dω̃

=
1

2π

∫ ∞

−∞
log T̃ (ω̃)dω̃,

(24)

where by Corollary 2 the complementary sensitivity-like
function of auxiliary system T̃ (ω̃) satisfies

T̃ (ω̃) =

√
φỹ(ω̃)

φd̃(ω̃)
=

√
φy(−ω̃−1)

φd(−ω̃−1)
= T (ω). (25)

Meanwhile, since the complementary sensitivity-like func-
tion of the auxiliary system is identical to the sensitivity-like
function of the inverse system, our task becomes to seek a
lower bound for the sensitivity Bode-like integral for the in-
verse system shown in Figure 3. Since the inverse frequency
noise d̃ is a wide sense stationary process, applying Theorem
4.8 in [4] to the inverse system, we have

I∞(ỹ; ẽ)− I∞(d̃; ẽ) ≥
∑

zi∈UZ

1

zi
. (26)

When the disturbance d̃ is stationary Gaussian, according
to (25) and Theorem 4.8 in [4], we have

1

2π

∫ ∞

−∞
log T (ω)

dω

ω2
=

1

2π

∫ ∞

−∞
log T̃ (ω̃)dω̃

= I∞(ỹ; ẽ)− I∞(d̃; ẽ) ≥
∑

zi∈UZ

1

zi
.

(27)

This completes the proof.

Remark 3 Since log T (ω) = log |T (jω)| tends to infinity
as ω → ∞, similar to (15), we define the Bode-like integral
of T (ω) with a weighting factor 1/ω2 in (23). We note
that this weighting factor induces some restrictions when
analyzing the complementary sensitivity via information-
theoretic approach, such as the requirement of stationary
Gaussian condition on the inverse frequency signal.

Remark 4 When the disturbance d̃ is Gaussian stationary
and the initial condition x̃0 is Gaussian, by Lemma 1 we

can express the mutual information rate I∞(ỹ, ẽ) in terms of
the density functions of e and y:

I∞(ỹ, ẽ) = − 1

4π

∫ ∞

−∞
log

(
1− |φỹẽ(ω̃)|2

φỹ(ω̃)φẽ(ω̃)

)
dω̃

= − 1

4π

∫ ∞

−∞
log

(
1− |φye(ω)|2

φy(ω)φe(ω)

)
dω

ω2
.

(28)

The expression of I∞(d̃; ẽ) can be readily implied.

V. AN ILLUSTRATIVE EXAMPLE

With the lower bound of the complementary sensitivity
Bode-like integral given in Theorem 3, we now investigate
the control trade-offs in an aircraft flight-path angle tracking
problem. Considering an F-16 aircraft with Mach = 0.7 and
altitude h = 10, 000 ft, the linearized longitudinal dynamics
can be described by the following state-space model [21].

A =

−11.707 0 −75.666
0 11.141 −79.908

0.723 0.907 −1.844

 , B =

 0
0

0.117

 ,

C =
[
0, 0, 1

]
,

where the input is elevator deflection δe(t), and the output
is flight-path angle γ(t). With zero initial condition, the lon-
gitudinal dynamics in state-space form can be equivalently
described by the following transfer function

G(s) =
0.117 · (s+ 11.71)(s− 11.14)

(s+ 2.979)(s− 1.051)(s+ 0.4826)
,

which contains a non-minimum phase zero at s = 11.14 and
an unstable pole at s = 1.051. Consider the following two
PID controllers with different sets of parameters:

C1(s) = −0.4− 0.06 · 1
s
− 1 · 100

1 + 100 · 1/s
,

C2(s) = 2 · C1(s),

where 100/(1+100/s) is an approximation of the derivative
term in PID controller, and the open-loop transfer functions
L1(s) = G(s)C1(s) and L2(s) = G(s)C2(s).

With the plant transfer function G(s) and control mapping
C1(s), we first verify the lower bounds of Bode-like inte-
grals. By Lemma 1, we can compute the Bode-like integral
in (23) with the complementary sensitivity function defined
by L1(s), which gives

1

2π

∫ ∞

−∞
log T (ω)

dω

ω2
= 0.915 ≥ 8.977×10−2 =

∑
zi∈UZ

1

zi
.

The sensitivity Bode-like integral can also be computed as

1

2π

∫ ∞

−∞
logS(ω)dω = 6.925 ≥ 1.051 =

∑
pi∈UP

pi.

Remark 5 Although both the sensitivity and complementary
sensitivity Bode-like integrals are bounded in this exam-
ple, for arbitrary causal transfer functions L(s) that are
closed-loop stable, these two Bode-like integrals are not
guaranteed to be bounded. A comprehensive discussion on
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the boundedness of sensitivity Bode integral subject to the
different conditions of the open-loop transfer functions L(s)
is available in [22].

With the linearized longitudinal dynamics G(s) and con-
troller mappings C1(s) and C2(s), by Theorem 1 and Corol-
lary 2, the magnitudes of complementary sensitivity-like
functions and sensitivity-like functions are given in Figure 4,
in which the solid lines denote the data with C1(s) and
the dashed lines represent the data with C2(s). Subject
to disturbance d(t), the complementary sensitivity-like and
sensitivity-like functions shown in Figure 4 tell that control
mapping C1(s) performs better in disturbance mitigation in
higher frequencies (ω > 5 rad · s−1), while control mapping
C2(s) performs better when attenuating the disturbance of
lower frequencies (ω < 5 rad · s−1), which can be explained
by inequalities (1) and (23), since the area below the solid
line should equal to the area below the dashed line when
the control mappings do not contain any unstable pole and
non-minimum phase zero. This phenomenon is also known
as the water-bed effect [23].

VI. CONCLUSIONS

We discussed the relationship between Bode integrals of
(complementary) sensitivity functions and (complementary)
sensitivity-like functions. A lower bound for the continuous-
time complementary sensitivity Bode-like integral was de-
rived based on the power spectral densities of signals. The
lower bound was later examined with the linearized flight-
path angle tracking control problem of an F-16 aircraft. Fu-
ture discussions may include relaxing distribution condition
on the disturbance signal and generalizing these results to
nonlinear systems.

APPENDIX

A. Proof of Theorem 1

Since d(t) = e(t)+y(t), the density function φd(ω) in (16)
satisfies

φd(ω) =

∫ ∞

−∞
rd(τ) · e−jωτdτ

=

∫ ∞

−∞
[re(τ) + rey(τ) + rye(−τ) + ry(τ)] e

−jωτdτ

= φe(ω) + φey(ω) + φye(ω) + φy(ω) (29)

Letting τ = v − t, and noticing that y(t) =
∫∞
0

l(v′)e(t −
v′)dv′, subject to Assumption 1, the covariances re, rey, rye
and ry , in (29) satisfy

re(v, t) = Cov[e(t+ v − t), e(t)]

= Cov[e(t+ τ), e(t)] = re(τ) (30a)

rey(v, t) = Cov[e(v),
∫ ∞

0

l(v′)e(t− v′)dv′]

=

∫ ∞

0

l(v′)re(v
′ + τ)dv′

= rey(τ)

rye(v, t) = Cov[
∫ ∞

0

l(v′)e(v − v′)dv′, e(t)]

=

∫ ∞

0

l(v′)re(−v′ + τ)dv′ (30b)

= rye(τ)

ry(v, t) = Cov[
∫ ∞

0

l(v′)e(v − v′)dv′,

∫ ∞

0

l(t′)e(t− t′)dt′]

=

∫ ∞

0

∫ ∞

0

l(v′)l(t′) · re(τ − v′ + t′)dv′dt′

= ry(τ) (30c)

Hence the spectral density functions φey, φye, and φy , in (29)
satisfy

φey(ω) =
1

2π

∫ ∞

−∞
rey(τ) · e−jωτdτ

=
1

2π

∫ ∞

0

ejωv′
l(v′)

∫ ∞

−∞
e−jω(τ+v′)re(τ + v′)dτdv′

= L(−jω)φe(ω) (31a)

φye(ω) =
1

2π

∫ ∞

−∞
rye(τ) · e−jωτdτ

=
1

2π

∫ ∞

0

e−jωv′
l(v′)

∫ ∞

−∞
e−jω(τ−v′)re(τ − v′)dτdv′

= L(jω)φe(ω) (31b)

φy(ω) =
1

2π

∫ ∞

−∞
ry(τ) · e−jωτdτ

=

∫ ∞

0

ejωt′ l(t′)

∫ ∞

0

e−jωs′ l(s′)· (31c)∫ ∞

−∞
e−jω(τ−s′+t′)re(τ − s′ + t′)dτds′dt′

= L(−jω)L(jω)φe(ω)

Substituting (29) and (31) into the sensitivity-like function
S(ω) defined in (16), we can rewrite the sensitivity-like
function as follows

S(ω) =

√
φe(ω)

[1 + L(−jω)] · [1 + L(jω)] · φe(ω)
. (32)

When φe(ω) 6≡ 0, we have

S(ω) =
√

S(−jω) · S(jω). (33)

Since S(−jω) = S̄(jω), where S̄(jω) is the complex
conjugate of S(jω), the equality (20) in Theorem 1 can be
retrieved from

1

2π

∫ ∞

−∞
logS(ω) dω =

1

4π

∫ ∞

−∞
log [S(−jω) · S(jω)] dω

=
1

2π

∫ ∞

−∞
log |S(jω)|dω. (34)

This completes the proof.

B. Proof of Corollary 2
Substituting (29) and (31) into the complementary

sensitivity-like function T (ω) defined in (18), we can then
rewrite T (ω) as follows

T (ω) =

√
L(−jω)L(jω) · φe

[1 + L(−jω)] · [1 + L(jω)] · φe
(35)
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(ω

) 
o

r 
|T

(j
ω

)|

S
(ω

) 
o

r 
|S

(j
ω

)|

Frequency ω (rad/s) Frequency ω (rad/s)

(6.149, 4.581)

(3.878, 2.799)

(5.926, 4.354)

(3.472, 2.583)

Fig. 4. Complementary sensitivity-like functions (left) and sensitivity-like integrals (right).

When φe(ω) 6≡ 0, it follows that

T (ω) =
√
T (−jω) · T (jω) (36)

Since T (−jω) = T̄ (jω), where T̄ (jω) is the complex
conjugate of T (jω), the equality (21) in Corollary 2 can
be retrieved from

1

2π

∫ ∞

−∞
log T (ω)

dω

ω2
=

1

4π

∫ ∞

−∞
log[T (−jω) · T (jω)]dω

ω2

=
1

2π

∫ ∞

−∞
log |T (jω)|dω

ω2
(37)

This completes the proof.
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